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Abstract 

 
Fundamental changes in power grids due to decarbonization require advanced monitoring and 
automated analysis. Capturing synchronized waveform data from voltage and current sensors, 
sometimes referred to Continuous Point on Wave (CPOW) monitoring, offers several capabilities 
beyond synchrophasors from Phasor Measurement Units (PMUs). 
 
However, the obvious drawbacks in manipulating, transferring, and storing waveform are the high data 
bandwidth and storage requirements. Therefore, access to streaming synchronized waveform data is 
typically restricted to substation local area networks (LANs). This paper reports on a platform to address 
these issues and therefore to deliver wide-area waveform monitoring in a way which is convenient and 
practical. It is shown how a lossless data compression method designed for streaming waveform data 
can significantly reduce data bandwidth requirements and improve end-to-end efficiency and latency. 
Data bandwidth requirements can be reduced to 5-15% of the original size. 
 
The same approach can be applied to both real-time streaming and offline data storage, with reduced 
file size compared to other industry formats such as COMTRADE and PQDIF. It supports any sampling 
rate, any number of samples per message, and arbitrary configurations of measurement quantities to 
be sent. An implementation of the scheme, called Slipstream, has been open sourced to enable industry 
adoption. 

1 Introduction 

 
Monitoring wide-area transient phenomena is increasingly of importance for ensuring efficient grid 
operation and stability. There is growing evidence that synchronized waveform-based monitoring, which 
is sometimes referred to as Continuous Point on Wave (CPOW) monitoring, will be increasingly 
important for power system monitoring, protection, and control [1]–[4]. For example, in the Great Britain 
grid, oscillations contributed to a major outage in August 2019 which resulted in disconnecting supplies 
of 1 in 10 customers to secure the wider transmission system [5], yet synchrophasor monitoring systems, 
by design, cannot capture the full frequency range of all possible oscillation modes. Solar photovoltaic 
(PV) integration has caused widespread interharmonics to be observed, which could not be properly 
investigated, even with wide-area synchrophasor measurements, due to frequency aliasing [6]. Local 
power quality metrics such as harmonics and other transient events can also be computed from 
waveform data, which is not possible from synchrophasors. New techniques in fault classification and 
fault location require waveform data to perform pattern matching, with improved classification results at 
higher waveform sampling frequencies [7], [8]. In summary, synchrophasor data do not provide the 
detailed waveform, harmonic, and frequency dynamic range required to fully detect and analyse 
phenomena and events in power systems. 
 
Figure 1 illustrates the value of waveform data compared to PMU data sources. The plots represent 
positive sequence voltage magnitude from a PMU (upper plot) and the underlying waveform data (lower 
plot) for the same simulated event. Clearly waveform data provides richer information about the system, 
including harmonics and fast-acting transients. 
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Figure 1: Comparison of PMU and waveform (CPOW) data 

 
There is therefore a need to provide greater wide-area visibility which includes the full waveform data. 
However, the quantity of raw data which is generated and potentially transferred over a wide-area 
network (WAN) is much greater than typical synchrophasor or SCADA data streams. In particular, very 
high sampling rate applications such as travelling wave protection demand improved encoding methods 
to reduce data transfer [9]. 
 
This paper presents a new waveform data compression approach, called Slipstream, which significantly 
builds on the contributions in [10]. The method provides very high compression performance yet is 
lossless and therefore allows all data to be fully reconstructed by the receiver. Time synchronization of 
the samples and data quality information are strictly preserved. The performance of encoding and 
decoding is also very efficient, such that it is much faster to compress the data than to manipulate the 
raw uncompressed data. The end-to-end latency for transmitting waveform streams over a local-area 
network (LAN) or WAN is also reduced. Slipstream is open source and available at [11]. 

2 Background 

2.1 Existing Standards for Waveform Data Transfer 

2.1.1 Real-time Data Streaming 

The main existing standard for streaming synchronized waveform data is the IEC 61850-9-2 Sampled 
Value (SV) Ethernet-based protocol, with some additional conventions for merging units defined in IEC 
61869-9. IEC 61850-90-5 extends SV for transfer over an IP-based WAN. 
 
The work in [10] achieved moderate compression performance while broadly minimizing the changes to 
the IEC 61850-9-2 protocol format. However, the new approach in this paper is a radial redesign which 
is not encumbered by the conventions of IEC 61850-9-2, and is optimized for efficiency and throughput. 
The Streaming Telemetry Transport Protocol (STTP) is presently under development as IEEE standard 
P2664 [12]. Open source reference implements are available at [13]. STTP is intended to supersede 
IEEE C37.118.2 as the future protocol for transferring synchrophasor data, as well as being suitable for 
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wider applications. STTP supports sending waveform timeseries data, encryption using TLS, and 
includes an optional lossless compression feature. 
 

2.1.2 File-based Waveform Storage 

The PQDIF format (IEEE Std. 1159.3) is designed as a self-contained description of a power quality, 
fault, or transient event. A PQDIF record typically contains a relatively short burst of waveform data and 
derived timeseries quantities. It includes a zlib-based compression feature. The COMTRADE format 
offers a similar capability to PQDIF, but does not group multiple “observation” records together in a 
single file or provide integrated data compression. Power quality meters typically also provide data in 
an arbitrary comma-separated values (CSV) format for simple decoding. 

2.2 Existing Methods for Waveform Data Compression 

2.2.1 Lossy Compression 

Reference [14] presents impressive compression rates for waveform and PMU data using adaptive sub-
band compression, but involves relatively complex encoding and results in some loss in data fidelity. 
This may be suitable for some applications, but it is undesirable to lose information for critical 
measurements in power systems. The processing requirements for a lossy encoder is also likely to be 
high, such as for performing Fourier or wavelet analysis to extract the prominent harmonic activity. 

2.2.2 Lossless Compression 

General purpose lossless compression algorithms, such as gzip, have been shown to be relatively 
ineffective and computationally expensive for typical power system waveform data [10]. The method in 
[10] shows that a bespoke compression method, with knowledge of the underlying data, can provide 
both high compression rates and good real-time performance when encoding and decoding. This 
concept is demonstrated for other domains in [15]. 

3 Compression Method 

3.1 Design Principles 

Slipstream is designed primarily for streaming raw measurement data, similar to the IEC 61850-9-2 
Sampled Value protocol. It is designed to support high sample rate waveform voltage and current data, 
but also supports other measurement types and derived data such as frequency measurements. The 
data compression must be lossless to ensure that there is no impact on measurement fidelity. 

The encoder is designed to be flexible. It supports any number of samples per message so that it can 
be used for different applications where efficient representation of measurement data is useful. For 
example, 2 to 8 samples per message may be appropriate for real-time applications while still benefitting 
from compression, and much larger messages could be used for archiving fault or event records, with 
excellent compression opportunities. A bit error in one message should only invalidate that message, 
and not future messages. 

The encoding method is optimized for the lowest data size for 1) minimal network data transfer for real-
time streaming, and 2) small file sizes for saving event captures to permanent storage. 

It is assumed that out-of-band communications will agree the sampling rate, the number of variables to 
be transferred, the identifiers of all measurement sources, and other metadata. This is similar to IEEE 
C37.118.2 configuration frames, the STTP command channel, or IEC 61850’s SCL configuration files. 
This helps reduce the amount of data to be send in the main data stream in real-time to allow successful 
decoding. In particular, the sampling rate and the maximum number of signals encoded in each 
message must be fixed before real-time communications starts. All values in one data stream must use 
the same sampling rate. 

It is important to ensure that data quality and time synchronization information are strictly preserved and 
provided for every data sample. Timestamps must be able to accurately represent waveform samples. 

Implementations should prefer efficient encode and decode processing, with up-front memory 
allocations, where possible. However, the use of compression will naturally improve the end-to-end 
latency, due to the reduced data to be processed and transferred. 

The proposed method produces a byte stream which is suitable for a variety of transport methods, such 
as Ethernet, UDP, TCP, HTTP, WebSocket, STTP, and saving to a file. The transport protocol is 
responsible for ensuring reliable delivery of messages, if that is required by the application. 
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3.2 Overview of Method 

 
A key part of the design is encoding and compressing each data stream (e.g., signals from individual 
sensors) separately, and aggregating each compressed stream into the final message. This is the same 
method used in [10], and is similar to how high-performance timeseries databases such as TimescaleDB 
perform compression on columns of data over time, rather than generically compressing each row as 
they are added to the database [16]. 

 Figure 2 illustrates the process for encoding each data stream. 

 

 
Figure 2: Compression encoder sequence for each data stream 

 

First, delta-delta encoding is used to encode only the differences between consecutive samples, to 
significantly reduce the data to be encoded. The first sample must be encoded in full. The second sample 
is encoded as the difference from the first sample (delta encoding). All remaining samples are encoded 
using delta-delta encoding, and the number of "layers" of the delta-delta encoding can be configured. 
The encoder supports an arbitrary number of “layers”, which has the effect of applying a linear 
approximation model to the input signal at higher dimensions. 

Wherever possible, variable length integer encoding is used to reduce the number of bytes required for 
encoding the results from the delta-delta encoding stage. Specifically, zig-zag encoding is used to cater 
for signed values, as is used in the Protocol Buffers serialization format [17]. 

If a relatively large number of values is included per message (such as for an event record), simple-8b 
encoding [18] can be used to improve the packing of multiple variable-length integer values. It is slightly 
better to use simple-8b for all values, even including the first and second delta values (which will be 
relatively large compared to subsequent delta values). 

Large messages containing thousands of samples can also contain some redundancy after the delta-
delta and simple-8b encoding, and can still benefit from generic gzip compression to increase the 
entropy of the message. 

The data quality is assumed to not change very often. Therefore, it is encoded using run-length encoding 
(RLE). A special run-length of 0 is used to represent that all future values within the same message are 
the same. So, for the common case where the quality value is 0 for all samples, that can be encoded 
very efficiently in one byte for the value plus one byte for the number of samples. 
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3.3 Message Format 

Figure 3 illustrates the message format used by the proposed compression method. The maximum 
number of samples to be encoded per message must be defined ahead of encoding, and must be shared 
with the decoder. 

 

Figure 3: Overview of message format 

 
There are four sections of each message: 

1. Header (see below for details). 
2. First sample data encoding, per input stream. 
3. Second and later sample encoding, per input stream, using delta-delta encoding. 
4. Quality values for each sample, per input stream, using RLE. 

 
The message header contains the following fields: 

1. Universally unique identifier (UUID), 16 bytes. 
2. Timestamp of the first sample, 8 bytes. 
3. Number of encoded samples, variable length, maximum of 4 bytes. This is required so that if a 

stream stops before the maximum number of samples per message, or if the required size is 
unknown when encoding starts, it is still possible to unambiguously decode the message. 

 

Note that the message format is slightly different when simple-8b encoding is used, as the first and 
subsequent samples for each stream are processed together. Simple-8b encoding is only worthwhile 
for messages with at least approximately 16 samples per message. 

3.4 Data Types 

Data values follow the approach which has already been adopted for IEC 61850-9-2 encoding, and is 
elaborated in the following subsections. 

3.4.1 32-bit signed integer for all data values 

This requires a scaled integer representation for floating-point data, as used for SV data. However, the 
method could be extended for directly representing floating-point values in the future, such as using the 
method in [19] to compress the exponent and fraction (sometimes called the significand or mantissa) as 
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separate data streams. For floating-point numbers, XOR deltas produce better compression 
performance than numerical deltas. 

3.4.2 32-bit unsigned integer for quality 

This is intended to be based on the IEC 61850 quality specification, for which only 14 bits are presently 
used (including the "derived" indicator), and only 16 bits should ever be used. It is proposed here that 
the most significant byte is used for time quality, with the two least significant bytes used for data quality 
according to the IEC 61850 approach. The exact encoding is not prescribed at present, but 32 bits per 
data sample have been provisioned, and there is space for future expansion. 

3.4.3 64-bit signed integer for timestamp 

The timestamp format is based on the Go programming language [20] representation, which provides 
resolution of 1 ns. The 64-bit format is relative to 1st January 1970 UTC, and is limited to a date between 
the years 1678 and 2262. Timestamps in STTP are restricted to 100 ns resolution; while suitable for 
output values such as frequency, it is very inaccurate for waveform data, which could be sampled at 
inconvenient rates such as 14.4 kHz (so the 69444.44 ns sampling period would be truncated to 
69400.00 ns, leading to an intrinsic 44.44 ns error). If the start of the data capture was always aligned 
to the second roll-over point then the fraction of second value would always be zero, but the protocol 
should not be restricted in this way. Similarly, IEC 61850 and IEEE C37.118.2 timestamps only dedicate 
24 bits to the fraction of second and have a poor resolution limit of 59.6 ns. Note that the timestamp is 
only encoded once per message to indicate the timestamp of the first encoded sample. 

3.5 Other Encoding Details 

It is assumed that every sample is included for the defined message size. If a sample was missed (e.g. 
due to the sensor or underlying data source being unavailable), a zero sample should be added and the 
data quality should be adjusted appropriately. This simplifies the encoding and significantly reduces the 
amount of data to be sent because only the starting timestamp needs to be included per message, and 
all other timestamps can be inferred. Therefore, a single 64-bit field can encode the timestamp, rather 
than 64 bits per sample. 

Decoders must have knowledge of the encoding parameters. This means that tools such as Wireshark 
may be unable to decode messages and provide diagnostic information, unless it is also able to access 
and decode the out-of-band data which describes the message format (i.e., the sampling rate and 
number of variables). It is not possible to decode the quality values until all the data values in a message 
are decoded first. 

It is assumed that three-phase quantities may also include a neutral voltage or current component, 
similar to the IEC 61850 "LE" profile [21]. 

The IEC 61850-9-2 SV protocol allows some unnecessary flexibility. For example, in principle, ASDUs 
in the same message could be mixed from different datasets, although this would be rare in practice. 
This new protocol does not allow this, in favor of efficiency and simplicity. 

It is assumed that bit error detection and correction are handled at the transport layer for 
communications. 

3.6 Spatial Compression 

The encoder has the option to specify one data stream as the “reference” for another. This means that 
only the differences relative to the reference waveform need to be encoded, leading to further 
compression efficiency. For signals that are typically very similar, such as temperature measurements 
and voltage measurements on the same phase on feeders connected to a common busbar, this offers 
excellent additional compression capabilities. This is termed “spatial compression” due to leveraging 
sensor data streams across multiple locations. 

In the best case, this can reduce the number of bytes to be encoded by approximately half, compared 
to the normal compression approach outlined in this paper. However, relatively small phase differences 
between the signals, such as introduced by changes in the power system state, can make the spatial 
compression less effective. 
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4 Compression Performance 

4.1 Overview 

Compression performance can typically reduce data to approximately 10% of the theoretical 
uncompressed sample size (assuming 4 bytes for data, 4 bytes for quality, and 8 bytes for timestamp). 
Higher sampling rates can compress down to <5%, often requiring less than 1 byte per new sample on 
average. Shorter messages with fewer samples will achieve compression of 15-25%. 

Compared to IEC 61850-9-2 SV, the performance is highly effective due to the additional overhead and 
repeated data inherent in the SV ASDU structure. For example, sampling at 14.4 kHz with 6 samples 
(ASDUs) per message (using the "LE" dataset with 8 variables) requires about 589 bytes for SV 
(including Ethernet header, but not including the "RefrTm" timestamp). This new protocol only requires 
approximately 134 bytes to convey the same information. 

The protocol compression tends to perform better for higher sampling rates, because the difference 
between samples is less and, on average, fewer bytes are required. Similarly, the protocol compression 
tends to perform worse for larger RMS values of voltage and current because the differences between 
samples is greater. 

4.2 Detailed Examples 

Using tailored lossless data compression, Slipstream can efficiently stream waveform data, or store 
triggered event records. This ensures that disturbance data can be stored efficiently, and all data is 
available, including important context before and after the incident. 

Data can typically be reduced to less than 10% of the original data size, as shown in Table 11. 
Interestingly, higher sampling rates can produce smaller message sizes due to efficiencies resulting 
from smaller deltas between samples, combined with simple-8b encoding. 

A data capture containing 10 three-phase voltage or current measurements captured at 4 kHz requires 
less than 1 Mbps of bandwidth, including the TCP/IP layers and the WebSocket Secure protocol layer 
to provide secured wide-area network transfer. The equivalent using IEC 61850-9-2 Sampled Values 
would require approximately 20 Mbps [10], without IP routing layers or encryption. This improvement 
means that it is possible to transfer waveform data over even legacy utility communications links. 

 

Sampling rate 
(Hz) 

Samples per message Message size (bytes) Size relative to original data 

4000 10 210 16.4% 

4000 4000 40778 8% 

14400 6 123 16.9% 

14400 14400 2812 0.2% 

150000 150000 7238 <0.1% 

Table 1: Typical compression performance for common values of samples per message 

 

Table 2 compares the proposed compressed encoding performance to other formats: non-compressed 
data, CSV, and CSV with generic gzip compression. A dataset containing four voltage measurements 
(at 400 kV RMS) and four current measurements (500 A RMS) is assumed. A non-nominal system 
frequency of 50.03 Hz is used, to avoid unrealistic repetitive data which is easily compressible and would 
be misleading. Note that the size is calculated relative to the number of byes required to store a 
timestamp, value, and quality for each sample (16 bytes). The first three rows in Table 2 also benefit 
from an optimization due to only requiring the timestamp to be encoded once per record, rather than for 
each of the eight data values. 

 
1 Table 1 can be recreated from the source code at [11]. 
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Data storage format 
Sampling rate 

(Hz) 
Samples per 

message 
Message 

size 
Size 

Time to 
encode 

Non-compressed raw 
binary data 

14400 144000 10.4 MB 56.3% 45 ms 

CSV 14400 144000 12.6 MB 68.1% 379 ms 

CSV with gzip 14400 144000 4.2 MB 22.5% 527 ms 

Slipstream 14400 144000 0.6 MB 3.5% 100 ms 

Table 2: Comparison with other encoding approaches 

 

The important result is that, in addition to the reduced data size, the encoding process is very fast with 
Slipstream compression, due to the reduced volume of data to be processed and written, combined with 
the fact that the compression method is intrinsically simple. This will result in further benefits and 
reduced latency when transmitting data over local and wide-area networks [10]. This approach therefore 
removes the key practical barrier of data bandwidth efficiency for utilities wishing to use and exploit 
waveform data sources. 

Sampling rate 
(Hz) 

Samples per message Message size (bytes) Size relative to original data 

4000 10 236 18.4% 

4000 4000 123738 12.1% 

14400 6 141 18.3% 

14400 14400 123213 6.7% 

150000 150000 779918 4.1% 

Table 3: Compression performance with high levels of harmonics and noise 

Events can be stored at full resolution and sampling rate (at least at 4 kHz). Data quality information is 
also strictly maintained to clearly identify unreliable data points (e.g., due to loss of the time 
synchronization source). Derived quantities, such as synchrophasors and harmonics, can be calculated 
and visualized from the raw data. 

4.3 Impact of Noise and Harmonics 

A disadvantage of the proposed method is that changes in data values or quality values will tend to 
increase the message size. This means that more data must be send or recorded when important or 
interesting events occur, compared with the steady-state. Random noise in the encoded quantities will 
tend to reduce compression performance. Harmonics will also have this effect, but to a lesser extent 
than noise. Table 3 illustrates the worst-case, with high levels of harmonics (a THD in the current of 
29%) and noise added relative to the results in Table 1, but the end-to-end benefit of compression is 
still compelling. 

It can also be noted that using higher “layers” of delta-delta encoding only leads to improvements in 
ideal circumstances, with little or no noise present in the signals. 

5 Compatibility with STTP 

The Slipstream compression approach could be integrated with STTP in the following ways: 

1. Using the “Buffer Block” capability which allows arbitrary blocks of binary data to be transferred. 
2. Deeper integration with STTP as an alternative compression approach. 
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6 Demonstration using WebSocket Secure 

Figure 4 illustrates Slipstream in use to encode multiple voltage and current measurements from a 
distributed optical sensing system, using the Synthesis [22] visualization and analysis software. Ten 
three-phase data streams, sampled at 14.4 kHz, are compressed and transmitted using the WebSocket 
Secure (WSS) protocol. The WSS stream is directed to the local server so that the received data can 
be visualized and compared to the original. This is achieved using less than 2 Mbps of data bandwidth 
to transmit all the waveform data. 

Synthesis also delivers derived quantities, such as synchrophasors and harmonics, from the raw data, 
and can perform functions such as anomaly detection to assist with condition-based maintenance. 

 

Figure 4: Demonstration of streaming compressed waveform data 

7 Future Work 

A formal specification of the Slipstream encoder and message format will be prepared. This will include 
recommended encoding options, such as the optimal number of delta-delta layers. Extending the 
software to support native floating-point numbers will be investigated. The use of SIMD instructions may 
also help to further improve encoding and decoding performance on supported processors. 

8 Conclusions 

The data compression method presented in this paper removes the barriers for utilities to stream, record, 
and analyse synchronized power system waveform data. It is especially useful for supporting 
applications such as: deeper classification of events (e.g., for root cause identification for electrical fault), 
detailed wide-area power quality investigations, building a history of transients experienced by assets 
for health monitoring, and post-event analysis of major system-wide disturbances. 

Synchronized waveform data offers many new applications to support the growth of low-carbon 
technologies and ensure wider grid stability during this transition. The high-performance lossless data 
compression proposed in this paper, with an open-source implementation, is designed to be an 
accelerator for wide adoption of waveform monitoring. 
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