PAC World 2022
Topic #8: Synchrophasors, applications and benefits
Performance and Applications of Synchronised Waveform Data Compression

Steven Blair, Jason Costello
Synaptec, UK

steven.blair@synapt.ec

Abstract

Fundamental changes in power grids due to decarbonization require advanced monitoring and
automated analysis. Capturing synchronized waveform data from voltage and current sensors,
sometimes referred to Continuous Point on Wave (CPOW) monitoring, offers several capabilities
beyond synchrophasors from Phasor Measurement Units (PMUS).

However, the obvious drawbacks in manipulating, transferring, and storing waveform are the high data
bandwidth and storage requirements. Therefore, access to streaming synchronized waveform data is
typically restricted to substation local area networks (LANS). This paper reports on a platform to address
these issues and therefore to deliver wide-area waveform monitoring in a way which is convenient and
practical. It is shown how a lossless data compression method designed for streaming waveform data
can significantly reduce data bandwidth requirements and improve end-to-end efficiency and latency.
Data bandwidth requirements can be reduced to 5-15% of the original size.

The same approach can be applied to both real-time streaming and offline data storage, with reduced
file size compared to other industry formats such as COMTRADE and PQDIF. It supports any sampling
rate, any number of samples per message, and arbitrary configurations of measurement quantities to
be sent. An implementation of the scheme, called Slipstream, has been open sourced to enable industry
adoption.

1 Introduction

Monitoring wide-area transient phenomena is increasingly of importance for ensuring efficient grid
operation and stability. There is growing evidence that synchronized waveform-based monitoring, which
is sometimes referred to as Continuous Point on Wave (CPOW) monitoring, will be increasingly
important for power system monitoring, protection, and control [1]-[4]. For example, in the Great Britain
grid, oscillations contributed to a major outage in August 2019 which resulted in disconnecting supplies
of 1in 10 customers to secure the wider transmission system [5], yet synchrophasor monitoring systems,
by design, cannot capture the full frequency range of all possible oscillation modes. Solar photovoltaic
(PV) integration has caused widespread interharmonics to be observed, which could not be properly
investigated, even with wide-area synchrophasor measurements, due to frequency aliasing [6]. Local
power quality metrics such as harmonics and other transient events can also be computed from
waveform data, which is not possible from synchrophasors. New techniques in fault classification and
fault location require waveform data to perform pattern matching, with improved classification results at
higher waveform sampling frequencies [7], [8]. In summary, synchrophasor data do not provide the
detailed waveform, harmonic, and frequency dynamic range required to fully detect and analyse
phenomena and events in power systems.

Figure 1 illustrates the value of waveform data compared to PMU data sources. The plots represent
positive sequence voltage magnitude from a PMU (upper plot) and the underlying waveform data (lower
plot) for the same simulated event. Clearly waveform data provides richer information about the system,
including harmonics and fast-acting transients.

mailto:steven.blair@synapt.ec

= =TT

\———_—--J

08 Very small impact in PMU data

pu)

PMU voltage magnitude (

15.05 15.06 15.07 15.08 15.09 15.1 15.11 15.12 15.13 15.14 15.15

voltage (pu)

CPOW

15.05 15.06 15.07 15.08 15.09 15.1 15.11 15.12 15.13 15.149 15.15
Time (s)

Figure 1: Comparison of PMU and waveform (CPOW) data

There is therefore a need to provide greater wide-area visibility which includes the full waveform data.
However, the quantity of raw data which is generated and potentially transferred over a wide-area
network (WAN) is much greater than typical synchrophasor or SCADA data streams. In particular, very
high sampling rate applications such as travelling wave protection demand improved encoding methods
to reduce data transfer [9].

This paper presents a new waveform data compression approach, called Slipstream, which significantly
builds on the contributions in [10]. The method provides very high compression performance yet is
lossless and therefore allows all data to be fully reconstructed by the receiver. Time synchronization of
the samples and data quality information are strictly preserved. The performance of encoding and
decoding is also very efficient, such that it is much faster to compress the data than to manipulate the
raw uncompressed data. The end-to-end latency for transmitting waveform streams over a local-area
network (LAN) or WAN is also reduced. Slipstream is open source and available at [11].

2 Background
2.1 Existing Standards for Waveform Data Transfer
2.1.1 Real-time Data Streaming

The main existing standard for streaming synchronized waveform data is the IEC 61850-9-2 Sampled
Value (SV) Ethernet-based protocol, with some additional conventions for merging units defined in IEC
61869-9. IEC 61850-90-5 extends SV for transfer over an IP-based WAN.

The work in [10] achieved moderate compression performance while broadly minimizing the changes to
the IEC 61850-9-2 protocol format. However, the new approach in this paper is a radial redesign which
is not encumbered by the conventions of IEC 61850-9-2, and is optimized for efficiency and throughput.
The Streaming Telemetry Transport Protocol (STTP) is presently under development as IEEE standard
P2664 [12]. Open source reference implements are available at [13]. STTP is intended to supersede
IEEE C37.118.2 as the future protocol for transferring synchrophasor data, as well as being suitable for

wider applications. STTP supports sending waveform timeseries data, encryption using TLS, and
includes an optional lossless compression feature.

2.1.2 File-based Waveform Storage

The PQDIF format (IEEE Std. 1159.3) is designed as a self-contained description of a power quality,
fault, or transient event. A PQDIF record typically contains a relatively short burst of waveform data and
derived timeseries quantities. It includes a zlib-based compression feature. The COMTRADE format
offers a similar capability to PQDIF, but does not group multiple “observation” records together in a
single file or provide integrated data compression. Power quality meters typically also provide data in
an arbitrary comma-separated values (CSV) format for simple decoding.

2.2 Existing Methods for Waveform Data Compression
2.2.1 Lossy Compression

Reference [14] presents impressive compression rates for waveform and PMU data using adaptive sub-
band compression, but involves relatively complex encoding and results in some loss in data fidelity.
This may be suitable for some applications, but it is undesirable to lose information for critical
measurements in power systems. The processing requirements for a lossy encoder is also likely to be
high, such as for performing Fourier or wavelet analysis to extract the prominent harmonic activity.

2.2.2 Lossless Compression

General purpose lossless compression algorithms, such as gzip, have been shown to be relatively
ineffective and computationally expensive for typical power system waveform data [10]. The method in
[10] shows that a bespoke compression method, with knowledge of the underlying data, can provide
both high compression rates and good real-time performance when encoding and decoding. This
concept is demonstrated for other domains in [15].

3 Compression Method
3.1 Design Principles

Slipstream is designed primarily for streaming raw measurement data, similar to the IEC 61850-9-2
Sampled Value protocol. It is designed to support high sample rate waveform voltage and current data,
but also supports other measurement types and derived data such as frequency measurements. The
data compression must be lossless to ensure that there is no impact on measurement fidelity.

The encoder is designed to be flexible. It supports any number of samples per message so that it can
be used for different applications where efficient representation of measurement data is useful. For
example, 2 to 8 samples per message may be appropriate for real-time applications while still benefitting
from compression, and much larger messages could be used for archiving fault or event records, with
excellent compression opportunities. A bit error in one message should only invalidate that message,
and not future messages.

The encoding method is optimized for the lowest data size for 1) minimal network data transfer for real-
time streaming, and 2) small file sizes for saving event captures to permanent storage.

It is assumed that out-of-band communications will agree the sampling rate, the number of variables to
be transferred, the identifiers of all measurement sources, and other metadata. This is similar to IEEE
C37.118.2 configuration frames, the STTP command channel, or IEC 61850’s SCL configuration files.
This helps reduce the amount of data to be send in the main data stream in real-time to allow successful
decoding. In particular, the sampling rate and the maximum number of signals encoded in each
message must be fixed before real-time communications starts. All values in one data stream must use
the same sampling rate.

It is important to ensure that data quality and time synchronization information are strictly preserved and
provided for every data sample. Timestamps must be able to accurately represent waveform samples.

Implementations should prefer efficient encode and decode processing, with up-front memory
allocations, where possible. However, the use of compression will naturally improve the end-to-end
latency, due to the reduced data to be processed and transferred.

The proposed method produces a byte stream which is suitable for a variety of transport methods, such
as Ethernet, UDP, TCP, HTTP, WebSocket, STTP, and saving to a file. The transport protocol is
responsible for ensuring reliable delivery of messages, if that is required by the application.

3.2 Overview of Method

A key part of the design is encoding and compressing each data stream (e.g., signals from individual
sensors) separately, and aggregating each compressed stream into the final message. This is the same
method used in [10], and is similar to how high-performance timeseries databases such as TimescaleDB
perform compression on columns of data over time, rather than generically compressing each row as
they are added to the database [16].

Figure 2 illustrates the process for encoding each data stream.

A 4

Figure 2: Compression encoder sequence for each data stream

First, delta-delta encoding is used to encode only the differences between consecutive samples, to
significantly reduce the data to be encoded. The first sample must be encoded in full. The second sample
is encoded as the difference from the first sample (delta encoding). All remaining samples are encoded
using delta-delta encoding, and the number of "layers" of the delta-delta encoding can be configured.
The encoder supports an arbitrary number of “layers”, which has the effect of applying a linear
approximation model to the input signal at higher dimensions.

Wherever possible, variable length integer encoding is used to reduce the number of bytes required for
encoding the results from the delta-delta encoding stage. Specifically, zig-zag encoding is used to cater
for signed values, as is used in the Protocol Buffers serialization format [17].

If a relatively large number of values is included per message (such as for an event record), simple-8b
encoding [18] can be used to improve the packing of multiple variable-length integer values. It is slightly
better to use simple-8b for all values, even including the first and second delta values (which will be
relatively large compared to subsequent delta values).

Large messages containing thousands of samples can also contain some redundancy after the delta-
delta and simple-8b encoding, and can still benefit from generic gzip compression to increase the
entropy of the message.

The data quality is assumed to not change very often. Therefore, it is encoded using run-length encoding
(RLE). A special run-length of 0 is used to represent that all future values within the same message are
the same. So, for the common case where the quality value is 0 for all samples, that can be encoded
very efficiently in one byte for the value plus one byte for the number of samples.

3.3 Message Format

Figure 3 illustrates the message format used by the proposed compression method. The maximum
number of samples to be encoded per message must be defined ahead of encoding, and must be shared
with the decoder.

UUID (16 bytes)

Header Starting timestamp (8 bytes)

Number of samples encoded (max. 4 bytes)

First Stream 1 Stream 2 Streamn
sample (4 bytes) (4 bytes) (4 bytes)

Stream 1 delta | Stream 2 delta | Stream n delta

(~1 byte) (~1 byte) (~1 byte)
Remaining
samples Stream 1 delta | Stream 2 delta | Stream n delta
(delta-delta (~1 byte) (~1 byte) (~1 byte)
encoded)
(~1 byte) (~1 byte) (~1 byte)
Quality Stream 1 Stream 2 Streamn
(RLE) (>=2 bytes) (>=2 bytes) (>=2 bytes)

Figure 3: Overview of message format

There are four sections of each message:

1. Header (see below for details).

2. First sample data encoding, per input stream.

3. Second and later sample encoding, per input stream, using delta-delta encoding.
4. Quality values for each sample, per input stream, using RLE.

The message header contains the following fields:

1. Universally unique identifier (UUID), 16 bytes.

2. Timestamp of the first sample, 8 bytes.

3. Number of encoded samples, variable length, maximum of 4 bytes. This is required so that if a
stream stops before the maximum number of samples per message, or if the required size is
unknown when encoding starts, it is still possible to unambiguously decode the message.

Note that the message format is slightly different when simple-8b encoding is used, as the first and
subsequent samples for each stream are processed together. Simple-8b encoding is only worthwhile
for messages with at least approximately 16 samples per message.

3.4 Data Types

Data values follow the approach which has already been adopted for IEC 61850-9-2 encoding, and is
elaborated in the following subsections.

3.4.1 32-bit signed integer for all data values

This requires a scaled integer representation for floating-point data, as used for SV data. However, the
method could be extended for directly representing floating-point values in the future, such as using the
method in [19] to compress the exponent and fraction (sometimes called the significand or mantissa) as

separate data streams. For floating-point numbers, XOR deltas produce better compression
performance than numerical deltas.

3.4.2 32-bit unsigned integer for quality

This is intended to be based on the IEC 61850 quality specification, for which only 14 bits are presently
used (including the "derived" indicator), and only 16 bits should ever be used. It is proposed here that
the most significant byte is used for time quality, with the two least significant bytes used for data quality
according to the IEC 61850 approach. The exact encoding is not prescribed at present, but 32 bits per
data sample have been provisioned, and there is space for future expansion.

3.4.3 64-bit signed integer for timestamp

The timestamp format is based on the Go programming language [20] representation, which provides
resolution of 1 ns. The 64-bit format is relative to 1st January 1970 UTC, and is limited to a date between
the years 1678 and 2262. Timestamps in STTP are restricted to 100 ns resolution; while suitable for
output values such as frequency, it is very inaccurate for waveform data, which could be sampled at
inconvenient rates such as 14.4 kHz (so the 69444.44 ns sampling period would be truncated to
69400.00 ns, leading to an intrinsic 44.44 ns error). If the start of the data capture was always aligned
to the second roll-over point then the fraction of second value would always be zero, but the protocol
should not be restricted in this way. Similarly, IEC 61850 and IEEE C37.118.2 timestamps only dedicate
24 bits to the fraction of second and have a poor resolution limit of 59.6 ns. Note that the timestamp is
only encoded once per message to indicate the timestamp of the first encoded sample.

3.5 Other Encoding Details

It is assumed that every sample is included for the defined message size. If a sample was missed (e.g.
due to the sensor or underlying data source being unavailable), a zero sample should be added and the
data quality should be adjusted appropriately. This simplifies the encoding and significantly reduces the
amount of data to be sent because only the starting timestamp needs to be included per message, and
all other timestamps can be inferred. Therefore, a single 64-bit field can encode the timestamp, rather
than 64 bits per sample.

Decoders must have knowledge of the encoding parameters. This means that tools such as Wireshark
may be unable to decode messages and provide diagnostic information, unless it is also able to access
and decode the out-of-band data which describes the message format (i.e., the sampling rate and
number of variables). It is not possible to decode the quality values until all the data values in a message
are decoded first.

It is assumed that three-phase quantities may also include a neutral voltage or current component,
similar to the IEC 61850 "LE" profile [21].

The IEC 61850-9-2 SV protocol allows some unnecessary flexibility. For example, in principle, ASDUs
in the same message could be mixed from different datasets, although this would be rare in practice.
This new protocol does not allow this, in favor of efficiency and simplicity.

It is assumed that bit error detection and correction are handled at the transport layer for
communications.

3.6 Spatial Compression

The encoder has the option to specify one data stream as the “reference” for another. This means that
only the differences relative to the reference waveform need to be encoded, leading to further
compression efficiency. For signals that are typically very similar, such as temperature measurements
and voltage measurements on the same phase on feeders connected to a common busbar, this offers
excellent additional compression capabilities. This is termed “spatial compression” due to leveraging
sensor data streams across multiple locations.

In the best case, this can reduce the number of bytes to be encoded by approximately half, compared
to the normal compression approach outlined in this paper. However, relatively small phase differences
between the signals, such as introduced by changes in the power system state, can make the spatial
compression less effective.

4 Compression Performance
4.1 Overview

Compression performance can typically reduce data to approximately 10% of the theoretical
uncompressed sample size (assuming 4 bytes for data, 4 bytes for quality, and 8 bytes for timestamp).
Higher sampling rates can compress down to <5%, often requiring less than 1 byte per new sample on
average. Shorter messages with fewer samples will achieve compression of 15-25%.

Compared to IEC 61850-9-2 SV, the performance is highly effective due to the additional overhead and
repeated data inherent in the SV ASDU structure. For example, sampling at 14.4 kHz with 6 samples
(ASDUs) per message (using the "LE" dataset with 8 variables) requires about 589 bytes for SV
(including Ethernet header, but not including the "RefrTm" timestamp). This new protocol only requires
approximately 134 bytes to convey the same information.

The protocol compression tends to perform better for higher sampling rates, because the difference
between samples is less and, on average, fewer bytes are required. Similarly, the protocol compression
tends to perform worse for larger RMS values of voltage and current because the differences between
samples is greater.

4.2 Detailed Examples

Using tailored lossless data compression, Slipstream can efficiently stream waveform data, or store
triggered event records. This ensures that disturbance data can be stored efficiently, and all data is
available, including important context before and after the incident.

Data can typically be reduced to less than 10% of the original data size, as shown in Table 1.
Interestingly, higher sampling rates can produce smaller message sizes due to efficiencies resulting
from smaller deltas between samples, combined with simple-8b encoding.

A data capture containing 10 three-phase voltage or current measurements captured at 4 kHz requires
less than 1 Mbps of bandwidth, including the TCP/IP layers and the WebSocket Secure protocol layer
to provide secured wide-area network transfer. The equivalent using IEC 61850-9-2 Sampled Values
would require approximately 20 Mbps [10], without IP routing layers or encryption. This improvement
means that it is possible to transfer waveform data over even legacy utility communications links.

Sampling rate Samples per message | Message size (bytes) | Size relative to original data

(Hz)
4000 10 210 16.4%
4000 4000 40778 8%
14400 6 123 16.9%
14400 14400 2812 0.2%
150000 150000 7238 <0.1%

Table 1: Typical compression performance for common values of samples per message

Table 2 compares the proposed compressed encoding performance to other formats: non-compressed
data, CSV, and CSV with generic gzip compression. A dataset containing four voltage measurements
(at 400 kV RMS) and four current measurements (500 A RMS) is assumed. A non-nominal system
frequency of 50.03 Hz is used, to avoid unrealistic repetitive data which is easily compressible and would
be misleading. Note that the size is calculated relative to the number of byes required to store a
timestamp, value, and quality for each sample (16 bytes). The first three rows in Table 2 also benefit
from an optimization due to only requiring the timestamp to be encoded once per record, rather than for
each of the eight data values.

1 Table 1 can be recreated from the source code at [11].

Sampling rate Samples per Message Time to

Data storage format (H2) message size Size encode
Non-compressed raw 14400 144000 10.4MB | 56.3% 45 ms
binary data
csv 14400 144000 12.6 MB 68.1% 379 ms
CSV with gzip 14400 144000 42MB | 225% 527ms
Slipstream 14400 144000 0.6 MB 3.5% 100 ms

Table 2: Comparison with other encoding approaches

The important result is that, in addition to the reduced data size, the encoding process is very fast with
Slipstream compression, due to the reduced volume of data to be processed and written, combined with
the fact that the compression method is intrinsically simple. This will result in further benefits and
reduced latency when transmitting data over local and wide-area networks [10]. This approach therefore
removes the key practical barrier of data bandwidth efficiency for utilities wishing to use and exploit
waveform data sources.

Sampling rate Samples per message | Message size (bytes) | Size relative to original data

(Hz)

4000 10 236 18.4%

4000 4000 123738 12.1%
14400 6 141 18.3%
14400 14400 123213 6.7%
150000 150000 779918 4.1%

Table 3: Compression performance with high levels of harmonics and noise

Events can be stored at full resolution and sampling rate (at least at 4 kHz). Data quality information is
also strictly maintained to clearly identify unreliable data points (e.g., due to loss of the time
synchronization source). Derived quantities, such as synchrophasors and harmonics, can be calculated
and visualized from the raw data.

4.3 Impact of Noise and Harmonics

A disadvantage of the proposed method is that changes in data values or quality values will tend to
increase the message size. This means that more data must be send or recorded when important or
interesting events occur, compared with the steady-state. Random noise in the encoded quantities will
tend to reduce compression performance. Harmonics will also have this effect, but to a lesser extent
than noise. Table 3 illustrates the worst-case, with high levels of harmonics (a THD in the current of
29%) and noise added relative to the results in Table 1, but the end-to-end benefit of compression is
still compelling.

It can also be noted that using higher “layers” of delta-delta encoding only leads to improvements in
ideal circumstances, with little or no noise present in the signals.

5 Compatibility with STTP

The Slipstream compression approach could be integrated with STTP in the following ways:

1. Using the “Buffer Block” capability which allows arbitrary blocks of binary data to be transferred.
2. Deeper integration with STTP as an alternative compression approach.

6 Demonstration using WebSocket Secure

Figure 4 illustrates Slipstream in use to encode multiple voltage and current measurements from a
distributed optical sensing system, using the Synthesis [22] visualization and analysis software. Ten
three-phase data streams, sampled at 14.4 kHz, are compressed and transmitted using the WebSocket
Secure (WSS) protocol. The WSS stream is directed to the local server so that the received data can
be visualized and compared to the original. This is achieved using less than 2 Mbps of data bandwidth
to transmit all the waveform data.

Synthesis also delivers derived quantities, such as synchrophasors and harmonics, from the raw data,
and can perform functions such as anomaly detection to assist with condition-based maintenance.

/:\(’ Synthesis + ADD § EMULATE EVENTS @ 0 DATASTREAMS 165 MEPS [LOGGING B ONUNE [LOGOUT
B System overview Capacitor monitoring demo =
Map
Location 1] Location 2 L] Location 3 L]
(§) 50.000 0.00 (§) 50.000 -0.00 (§) 50.000 -0.00
Y 1.604.-95.1 0.0+ v 0.0 Y 1.50A.-95.1 0.0%.1 0.0 Y 1.80A.-951 0.0%. v 0.0
% truaes N\, 1ane B s S0 Emuates wine T vsos Oy Emvae: VLTI
Location 6 (] Location 7 o] Location 8 =]
() 50.000 0.00 (§) 50.000 0.00 (§) 50.000 0.00
Y 1.60A.-95.1 0.0 u 0.0 Y 1.60A:-951 0.0% v 0.0 Y 1.60A.-95.1 0.8%.u 0.0
%0 s N\, wine B umas S0 Bt cine BB o1 Mcun %0 Louate: e .
Capacitor monitoring over WebSocket Secure =
Location 1 @ Location 2 (2] Location 3 (]
(4) 50.000 -0.00 () 50.000 0.00 (§) 50.000 0.00
Y 1.60a.-951 0.0%.0 0.0 Y 1.50A.-95.1 0.0%.1 0.0 Y 1.804.-95.1 0.0%u 0.0
AVRIEL B 195m0 &’ 1 vcen N uene @ esves & vvce \, 144 [T
Location 6] Location 7 ® Location 8 @
(§) 50.000 -0.00 (§) 50.000 -0.00 (§) 50.000 -0.00
Y 1.604.-95.1 .0 Y 1.604:-95.1 0.0% v 0.0 Y 1.604--951 0.8%.u 0.0
N vane @ sk BBt A e @ 1sswe B o Juive @ tswe B

synaptec

Figure 4. Demonstration of streaming compressed waveform data

7 Future Work

A formal specification of the Slipstream encoder and message format will be prepared. This will include
recommended encoding options, such as the optimal number of delta-delta layers. Extending the
software to support native floating-point numbers will be investigated. The use of SIMD instructions may
also help to further improve encoding and decoding performance on supported processors.

8 Conclusions

The data compression method presented in this paper removes the barriers for utilities to stream, record,
and analyse synchronized power system waveform data. It is especially useful for supporting
applications such as: deeper classification of events (e.qg., for root cause identification for electrical fault),
detailed wide-area power quality investigations, building a history of transients experienced by assets
for health monitoring, and post-event analysis of major system-wide disturbances.

Synchronized waveform data offers many new applications to support the growth of low-carbon
technologies and ensure wider grid stability during this transition. The high-performance lossless data
compression proposed in this paper, with an open-source implementation, is designed to be an
accelerator for wide adoption of waveform monitoring.

9 References

[1] A. Silverstein and J. Follum, ‘High-Resolution, Time-Synchronized Grid Monitoring Devices’,
NASPI. [Online]. Available:
https://www.naspi.org/sites/default/files/reference_documents/pnnl_29770_naspi_hires_synch_gri
d_devices_20200320.pdf

[2] J.Follum etal., ‘Phasors or Waveforms: Considerations for Choosing Measurements to Match Your
Application’, Pacific Northwest National Laboratory, PNNL-31215, 2021.

[3] S. Blair and P. Orr, ‘Synchronised Wide-Area Continuous Point on Wave Disturbance Recording’,
presented at the PAC World, 2021.

[4] W. Xu, Z. Huang, X. Xie, and C. Li, ‘Synchronized Waveforms — A Frontier of Data-Based Power
System and Apparatus Monitoring, Protection, and Control’, IEEE Trans. Power Deliv., vol. 37, no.
1, pp. 3-17, Feb. 2022, doi: 10.1109/TPWRD.2021.3072889.

[5] S. Blair, ‘Building Resilience and Secure Automation into Transmission and Distribution Systems’,
T&D World, Dec. 02, 2020. https://www.tdworld.com/overhead-
transmission/article/21149071/building-resilience-and-secure-automation-into-transmission-and-
distribution-systems

[6] C. Wang, C. Mishra, K. D. Jones, and L. Vanfretti, ‘Identifying Oscillations Injected by Inverter-
Based Solar Energy Sources in Dominion Energy’s Service Territory using Synchrophasor Data
and Point-on-Wave Data’, presented at the NASPI Work Group Virtual Meeting, Apr. 13, 2021.
[Online]. Available: https://www.naspi.org/sites/default/files/2021-
04/D1S1_02_wang_dominion_naspi_20210413.pdf

[7] X. Jiang, B. Stephen, and S. McArthur, ‘Automated Distribution Network Fault Cause Identification
With Advanced Similarity Metrics’, IEEE Trans. Power Deliv., vol. 36, no. 2, pp. 785-793, Apr. 2021,
doi: 10.1109/TPWRD.2020.2993144.

[8] M. Izadi and H. Mohsenian-Rad, ‘Synchronous Waveform Measurements to Locate Transient
Events and Incipient Faults in Power Distribution Networks’, IEEE Trans. Smart Grid, vol. 12, no. 5,
pp. 4295-4307, Sep. 2021, doi: 10.1109/TSG.2021.3081017.

[9] V. Skendzic and D. Dolezilek, ‘New and Emerging Solutions for Sampled Value Process Bus IEC
61850-9-2 Standard — An Editor’'s Perspective’, presented at the Southern African Power System
Protection & Automation Conference, Johannesburg, South Africa, 2017. [Online]. Available:
https://cms-
cdn.selinc.com/assets/Literature/Publications/Technical%20Papers/6797_NewEmerging_ DD_201
70309_Web2.pdf?v=20181019-141138

[10] S. M. Blair, A. J. Roscoe, and J. Irvine, ‘Real-time compression of IEC 61869-9 sampled value data’,
in 2016 IEEE International Workshop on Applied Measurements for Power Systems (AMPS), 2016,
pp. 1-6. doi: 10.1109/AMPS.2016.7602854.

[11] S. Blair, Slipstream. Synaptec Ltd, 2021. [Online]. Available:
https://github.com/synaptecltd/slipstream

[12] J. R. Carroll and F. R. Robertson, ‘A Comparison of Phasor Communication Protocols’, Pacific
Northwest National Laboratory, PNNL-28499, 2019. [Online]. Available:
https://www.osti.gov/servlets/purl/1504742

[13] ‘Streaming Telemetry Transport Protocol’, GitHub. https://github.com/sttp

[14] X. Wang, Y. Liu, and L. Tong, ‘Adaptive Subband Compression for Streaming of Continuous Point-
on-Wave and PMU Data’, IEEE Trans. Power Syst., vol. 36, no. 6, pp. 5612-5621, Nov. 2021, doi:
10.1109/TPWRS.2021.3072882.

[15] D. Lemire and L. Boytsov, ‘Decoding billions of integers per second through vectorization’, Softw.
Pract. Exp., vol. 45, no. 1, pp. 1-29, Jan. 2015, doi: 10.1002/spe.2203.

[16] ‘TimescaleDB 2.3: Improving columnar compression for time-series on PostgreSQL’, Timescale
Blog, May 26, 2021. https://blog.timescale.com/blog/timescaledb-2-3-improving-columnar-
compression-for-time-series-on-postgresql/

[17] ‘Encoding | Protocol Buffers | Google Developers’. https://developers.google.com/protocol-
buffers/docs/encoding#signed_integers

[18] V. N. Anh and A. Moffat, ‘Index compression using 64-bit words’, Softw. Pract. Exp., vol. 40, no. 2,
pp. 131-147, 2010, doi: 10.1002/spe.948.

[19] M. P. Andersen and D. E. Culler, ‘BTrDB: Optimizing Storage System Design for Timeseries
Processing’, in 14th USENIX Conference on File and Storage Technologies (FAST 16), 2016, pp.
39-52. Accessed: Mar. 25, 2016. [Online]. Available:
https://lwww.usenix.org/conference/fast16/technical-sessions/presentation/andersen

[20] The Go Authors, ‘The Go Programming Language Specification’. https://golang.org/ref/spec

10

[21] UCA International Users Group, ‘Implementation Guideline for Digital Interface to Instrument
Transformers Using IEC 61850-9-2’, 2004.

[22] ‘Synthesis™: our visualisation and analytics platform | Synaptec’.
https://synapt.ec/products/synthesis

11

